

TEP Greenhouse Gas Reduction Goal

ANDREA K. GERLAK, SCHOOL OF GEOGRAPHY & DEVELOPMENT AND UDALL CENTER FOR STUDIES IN PUBLIC POLICY

BEN MCMAHAN, CLIMATE ASSESSMENT FOR THE SOUTHWEST (CLIMAS) AND BUREAU OF APPLIED RESEARCH IN ANTHROPOLOGY (BARA)

UDALL CENTER for Studies in Public Policy

THE UNIVERSITY OF ARIZONA

Center for **Climate** Adaptation Science and Solutions

Outline

(1) Background and Context

(2) TEP Greenhouse Gas Reduction Goal Planning Report

(3) Scenarios for Carbon Reduction:Risks and Opportunities

PART I: BACKGROUND AND CONTEXT

ARIZONA BUSINESS RESILIENCE INITIATIVE (ABRI)

CLIMATE RISKS AND IMPACTS FOR THE REGIONAL UTILITY SECTOR:

RESULTS OF A COLLABORATIVE RESEARCH PROCESS WITH TUCSON ELECTRIC POWER

ANDREA K. GERLAK AND BEN MCMAHAN THE UNIVERSITY OF ARIZONA SEPTEMBER 2017

WITH ASSISTANCE FROM Avelino Arellano Ardeth Barnhart Katharine L. Jacobs Rachel Murray Christopher O'Connor Armin Soroashian Jaron Weston

The Log - Warman

	Qualitative Risk A	ssessment						
		Timescale & Intensity					Adaptation or Analysis Action	
	Description of Key Risk/Cost and/or Benefit	Short	Medium	Long	Confidence	Potential (TEP)		
	Fuel Load - Proximity to Critical Infrastructure	MED	нібн	нібн	MED	нібн	Modeling of fire risk and fuel load (right of way), fuel load redup parternships	
	Fire Risk - Proximity to Critical Infrastructure	MED	нібн	HIGH	MED	LOW	Fire models in relation to transmission infrastructure, potential	
Wildfire	Buffel Grass Infestation	MED	нібн	нібн	нібн	нідн	Modeling of buffel grass distribution, proximity to critical infras intervention/treatment to reduct BG	
	Debris Flow & Post-Fire Flooding	LOW	LOW	LOW	LOW	LOW	Modeling of post-fire flooding risk, when critical infrastructure threatened	
	Smoke & Ash	LOW	LOW	LOW	LOW	LOW	Smoke/plume and fire models in relation to transmission infras arc (soot)	
	Increased Peak (daily) Load/Demand	LOW	MED	нібн	нідн	нідн	Peak daily load modeling given changing climate (general warm demographic growth. Assess role of nighttime lows increasing c	
	Infrastructure Wear (O&M Costs)	LOW	MED	MED	MED	нібн	Assess role that warming termperatures play in infrastructure v	
	Transmission Efficiency	LOW	MED	MED	LOW	MED	Assess role that warming termperatures play in transmission ef significant enough to affect peak daily load during extreme hea	
Heat & Climate	Rolling Outages (regional demand spikes, other causes)	LOW	MED	нібн	MED	MED		
	Increased Revenue	LOW	MED	нібн	нідн	MED		
	Reduced Capacity Factor	LOW	MED	нібн	нібн	MED		
	Changing Temporality of Demand (Seasonal)	LOW	MED	нібн	MED	нібн	Adapt portfolio to provide for additional generating capacity du seasons (late spring/early summer, late early fall) as temperatu	
	Debris Flow & Post-Fire Flooding	LOW	LOW	LOW	LOW	LOW		
	Regional Drought & Water Restrictions (e.g. 1075')	MED	нібн	нібн	MED	MED		
Water	Springerville Plant							
	Water Availability - Competition over Water Resources (PHX Basin)	LOW	MED	нібн	HIGH	MED		
	Water Availability - Tucson Basin	LOW	LOW	LOW	нібн	MED	Limited need, current plans allow for sufficient water resources	
	Water Availability - Limited Water Resources (4 corners)	LOW	MED	нібн	нібн	MED	Contribute to regional drought plans that reflect short and inter projections on both water availability (1075, streamflow, other:	
	Increased Dust & Erosion	LOW	MED	нібн	нібн	LOW		
Air	Increased NO.x and O3 (Phoenix Basin)	LOW	MED	нібн	MED	LOW		
noke & Ast	Smoke & Ash	LOW	LOW	LOW	LOW	LOW		
	Increased GHG Emissions/Methane (Regionally)	MED	MED	нібн	нібн	нібн		
		LOW	MED	HIGH	LOW	LOW		
		LOW	MED	HIGH	MED	MED		
					HIGH	HIGH		

PART II: TEP GREENHOUSE GAS REDUCTION GOAL PLANNING REPORT

STATE OF THE CLIMATE SCIENCE

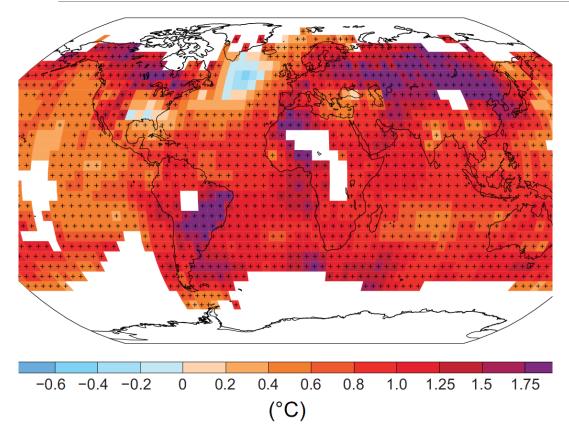
EXAMINATION OF SCIENCE BASED GHG EMISSION REDUCTION TARGETS FOR UTILITIES Greenhouse Gas Reduction Goal Planning Report

Prepared for Tucson Electric Power

November 2019

The Institute of the Environment The University of Arizona

Chris Knudson, Andrea K. Gerlak, and Ben McMahan



Center for Climate Adaptation Science and Solutions

- State of the Climate Science
- Examination of science based GHG emission reduction targets for utilities

State of the Climate Science

From the period 1880-2012, the global average temperature increase of both the land and ocean has been **0.85°C**.

Since pre-industrial times, CO₂ concentrations have increased by 40%.

Warming of the climate system is "unequivocal" and many of the changes to the system have been "unprecedented over decades to millennia".

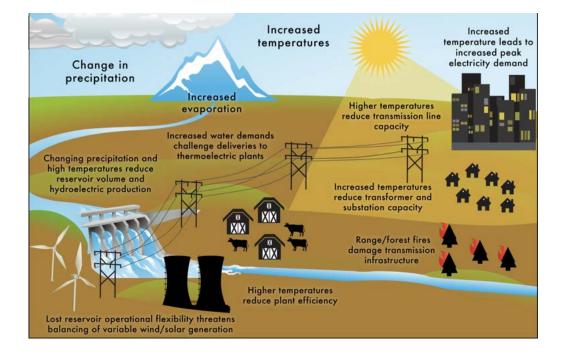
Human activity has been the **dominant cause** of global warming since the mid-20th century.

UArizona Climate Science Expertise

There will be **widespread impacts** even under 1.5°C warming.

Negative emissions will be **necessary to keep to 1.5°C** by 2100.

Global Warming of 1.5°C


IDCC

An IPCC special report on the impacts of global marning of 1.5°C above pre-inductrial levels and related global generhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

- IPCC Fifth Assessment Report
- Fourth National Climate Assessment
- Special Report: Global Warming of 1.5 ^oC

Projected impacts for the U.S. Southwest

Using the higher emission scenarios, there will be up to a **4.8°C increase** in annual average temperatures in the Southwest by the end of the century.

Under all the emission scenarios, there are concerns about economic losses and social vulnerabilities.

Paris Agreement and 1.5°C target

Countries pledged to keep global average temperature below 2°C, with a **target of 1.5 °C** above pre-industrial levels.

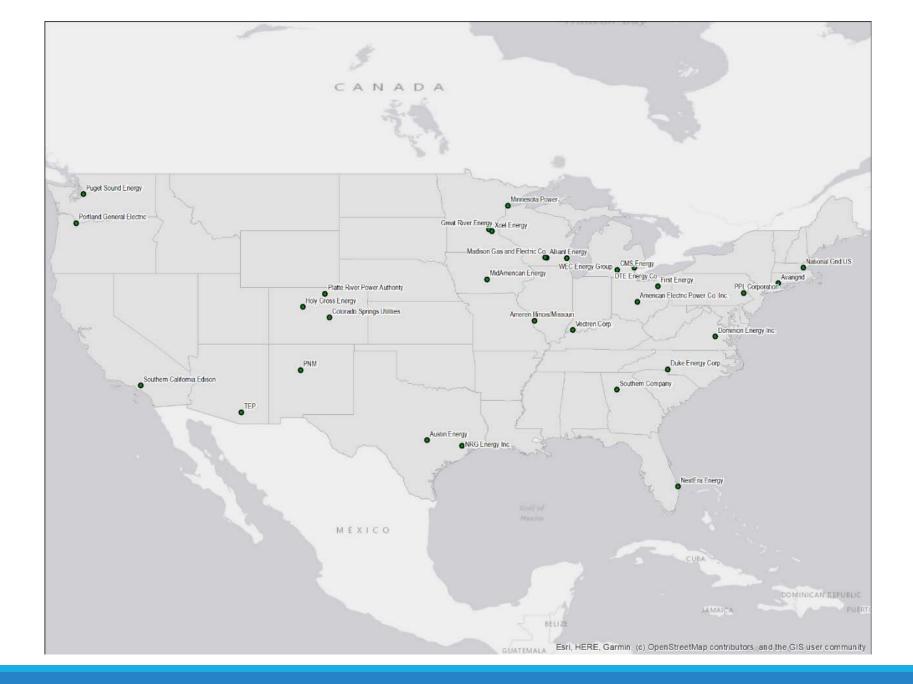
Key to this are **Nationally Determined Contributions (NDCs)**, the plans that countries make to mitigate climate change and adapt to its impacts.

National emission reduction targets

In response to the Paris Agreement, the US established its NDC in late 2015.

"The United States intends to achieve an economy-wide target of reducing its greenhouse gas emissions by **26%-28% below its 2005 level in 2025** and to make best efforts to reduce its emissions by 28%."

The NDC was to be followed by "deep, economy-wide" transformations to achieve **80% reductions under 2005 emissions by 2050**.


Examine science-based GHG emission reduction targets for utilities

A reduction target is "science-based" if it is in line with the level of decarbonization necessary to limit warming to 1.5 C or well below 2°C compared to pre-industrial levels.

DRIVING AMBITIOUS CORPORATE CLIMATE ACTION

29 US energy utilities

represent utilities with targets that state a specific percentage reduction in carbon emissions, compared to a baseline, by a future date

represent a diversity of sizes, locations, and energy mixes in their generating portfolios

Utility name	Headquarters	Baseline	Emissions reduction (final %)	Emissions target date (final)	Non-carbon emissions target	Utility ownership	Capacity (MW)	Energy portfolio
)					2017 Portfolio:
					Renewables 30% of			Coal 33%
					energy mix (2030)			Renewable 16%
					Eliminate all coal			Natural Gas 44%
	Madison,				from energy mix	Investor-		Oil 1%
Alliant Energy	Wisconsin	2005	80%	2050	(2050)	owned	5,500	Nuclear 6%
								2017 Portfolio:
								Coal 75%
								Renewable 4%
Ameren	St. Louis,					Investor-		Natural Gas 1%
Illinois/Missouri	Missouri	2005	80%	2050	N/A	owned	10,250	Nuclear 20%
								2017 Portfolio:
								Coal 47%
								Renewable (hydro,
								wind, solar) 13%
American								Natural Gas 27%
Electric Power	Columbus,					Investor-		Nuclear 7%
Co. Inc.	Ohio	2000	80%	2050	N/A	owned	24,000	Other 6%
								2017 Portfolio:
								Coal 28.2%
					Renewables 55% of			Renewable 36.4%
					energy mix (2025)			Natural Gas & Oil
					Renewables 65% of			12.9%
Austin Energy	Austin, Texas	N/A	N/A	N/A	energy mix (2027)	Cooperative	3,000	Nuclear 23.5%
~*								2017 Portfolio:
								Wind 80%
	Orange,					Investor-		Natural Gas 11%
Avangrid	Connecticut	2015	100%	2035	N/A	owned	7,000	Cogeneration 9%

Appendix 1: Table of US utilities with carbon emissions targets, and their characteristics

Motivations for GHG reduction goals

Government regulation

- > Emissions reduction targets (local, state, federal)
- Mandatory cap and trade (e.g. RGGI in Northeast US)

Declining cost of alternative energies

> Cost of natural gas and renewables has approached cost of coal

Investor pressure

Pension funds have been asking utilities to accelerate their work in reducing carbon emissions

Image

Opportunity for utilities to position themselves as leaders in sustainable energy

Select U.S. utilities' emissions reductions targets

	1990	1995	2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050
Southern California Edison													80%
National Grid US									40%				80%
NextEra Energy							65%						
Dominion Energy Inc.									60%				
American Electric Power				_					60%				80%
Vectren Corp.								60%					
Duke Energy Corp									40%				
Minnesota Power									40%				
DTE Energy Co.									50%		80%		
CMS Energy											90%		
First Energy												90%	
PPL Corporation													70%
Ameren Illinois/Missouri													80%
Madison Gas and Electric													80%
Alliant Energy									40%				80%
WEC Energy Group									40%				80%
Southern Company									50%		low-	to no-c	arbon
Xcel Energy									80%				100%
Portland General Electric													80%
Holy Cross Energy									70%				
Avangrid							25%			100%			
NRG Energy Inc.									50%				90%
PNM											100%	_	
Puget Sound Energy													100%

What can we learn from this?

Most investor-owned utilities frame targets as a % reduction below a baseline before an end date.

Diversity of targets makes comparisons difficult.

The **anchor among all the targets** is the extension to the **US's NDC**: "80% reductions under 2005 emissions by 2050".

Size/energy mix typology

	Small	Large
	25% of all utilities	29% of all utilities
Low	Alliant Energy, Avangrid, CMS	Dominion Energy Inc., Duke Energy
carbon	Energy, Portland General Electric,	Corp, National Grid US, NextEra
	Puget Sound Energy, Xcel Energy	Energy, NRG Energy Inc., Southern
		California Edison, Southern Company
	<u>33% of all utilities</u>	13% of all utilities
TT: 1	First Energy, Holy Cross Energy,	American Electric Power Co. Inc.,
High	Madison Gas and Electric Co.,	Ameren Illinois/Missouri, DTE Energy
carbon	Minnesota Power, PNM, PPL	Co.
	Corporation, Vectren Corp., WEC	
	Energy Group	

Table 3. Four-part typology of utility size (energy capacity) and use of coal (energy mix).

Situating TEP in the landscape of targets

	Small/Low-Carbon	Small/High-Carbon	Large/Low-Carbon	Large/High-Carbon
Low Target Level	-Alliant Energy -Portland General Electric	-Holy Cross Energy -Madison Gas and Electric Co. -Minnesota Power -PPL Corp. -WEC Energy Group	-Duke Energy -NRG Energy -Southern Company	-Ameren Illinois/Missouri
Medium Target Level		-Vectren Corp.	-Dominion Energy Inc. -National Grid -NextEra Energy -Southern California Edison	-American Electric Power -DTE Energy
High Target Level	-Avangrid -CMS Energy -Puget Sound Energy -Xcel Energy	-First Energy -PNM		

Table 5. Correspondence of level of reduction targets with the 4 utility types: Small/Low-Carbon, Small/High-Carbon, Large/Low-Carbon, and Large/High-Carbon.

TEP as a Small/High-carbon utility, which has the greatest proportion of Low targets among its members:

 50% of the targets are Low target, compared to 43% for Large/Low-Carbon, 33% for Large/High-Carbon, and 20% for Small/Low-carbon

TEP has the opportunity to set both a high targeted level of carbon reduction and an easily comparable target.

TEP could set a target with a 2005 baseline—which recognizes the industry norm—but that also sets a higher percentage goal than 80% reductions and/or sets a date earlier than 2050.

PART III: SCENARIOS FOR CARBON REDUCTION: RISKS & OPPORTUNITIES

IDENTIFYING PLAUSIBLE SCENARIOS FOR CARBON REDUCTION EVALUATING AND SYNTHESIZING IMPLICATIONS OF SCENARIOS

Science Based Targets Initiative

Carbon dioxide (CO₂) emissions by sector or source, World Share of carbon dioxide (CO₂) emissions from fuel combustion by sector or source.

100%

1960

Residential/Commercial 80% Mfg Industries and Construction 60% Transport 20% **Electricity and Heat** Production

1990

2000

2010 2014

Sectoral Decarbonization Approach:

GHG reduction target is "sciencebased" if it is in line with the level of decarbonization necessary to limit warming to 1.5 C or well below 2°C compared to pre-industrial levels.

DRIVING AMBITIOUS CORPORATE CLIMATE ACTION

Source: International Energy Agency (IEA) via The World Bank

1970

1980

Source: International Energy Agency & The World Bank

Electric Power Research Institute 4 insights for creating emissions reductions targets

- 1. Use individual perspectives to identify the **relevant uncertainties** and define the **company-specific context**;
- Base climate strategies on scientific understanding of climate goals and the companies' relationship to these goals;
- 3. Choose a cost-effective target, which will differ across companies; and
- 4. Robust strategies are those that are **flexible and that make sense in different future contexts**.

UArizona Research & Impacts Connecting Science & Decision Making

SBTs – 5 to 15 years plus long-term targets (e.g. 2050)

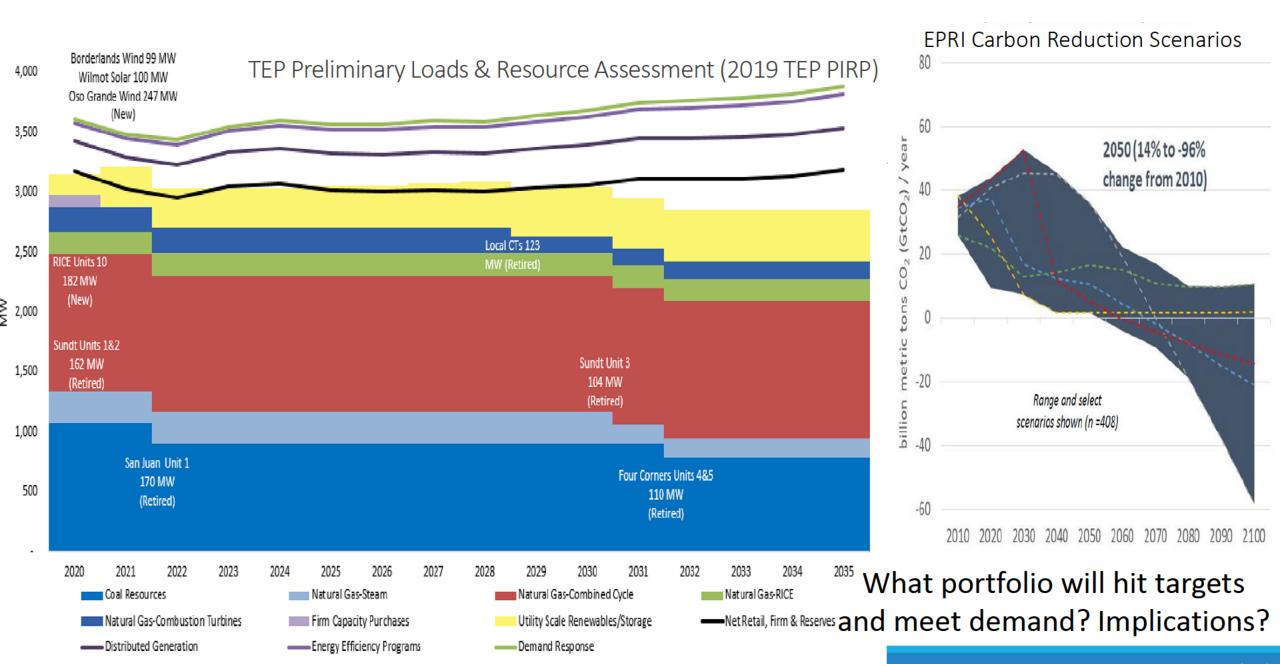
- Shorter term targets more tangible/real data and information for decision making
- Long term targets complicated by emergent technologies and pricing (e.g. CCS/CDR, Batteries/Storage, Renewables)

Plausible Scenarios for Carbon Reduction

- Data from TEP (Portfolios) and UArizona sectoral expertise
- Empirically what would we say with best available data

Evaluating and Synthesizing Implications of Scenarios

 UA Team: Climate Impacts and Adaptation, Weather and Solar Forecasting, Economics, Water Resource Management, Transportation, & Policy and Decision Making



GHG Reduction Scenarios and Impacts

- 1) Factors that affect load
 - Demographic growth
 - PEV penetration
 - Use per Customer (efficiency)
- 2) Ways to meet that load
 - Current portfolio
 - Reduced/no coal portfolio
 - Increased Renewables/Storage

- 3) Assess/quantify impacts of various options
 •GHG reductions targets and/or cumulative emissions & timing
 •Social cost of carbon, how changes affect customers, and other qual/quant/econ metrics
 •Resulting percent renewables
 - •Impacts (costs/benefits) tradeoffs for different resource portfolio scenarios

Sources: Tucson Electric Power 2019 PIRP (left) Electric Power Research Institute (right)

Regional Carbon Balance & PEV Penetration

Regional Carbon Emissions – Carbon Balance

 Increased PEV penetration & net regional emissions vs. utility emissions - implications for GHG targets

960-80 tech

(color TV.

microwave, VCR)

~20 years

Post 1980 tech

(computer,

cellphone, internet)

15-20 years

2020

2030 2040

- Assess/Quantify positive impacts associated with decreased CV use (local emissions, EPA attainment)
- Portfolio Decisions & Managing Existing Resources

Percent of US households

1915

1930

1900-20 tech

(telephone, stove,

electricity, auto)

~30-40 years

1920-40 tech

radio, fridge, clothes

25-30 years

1960

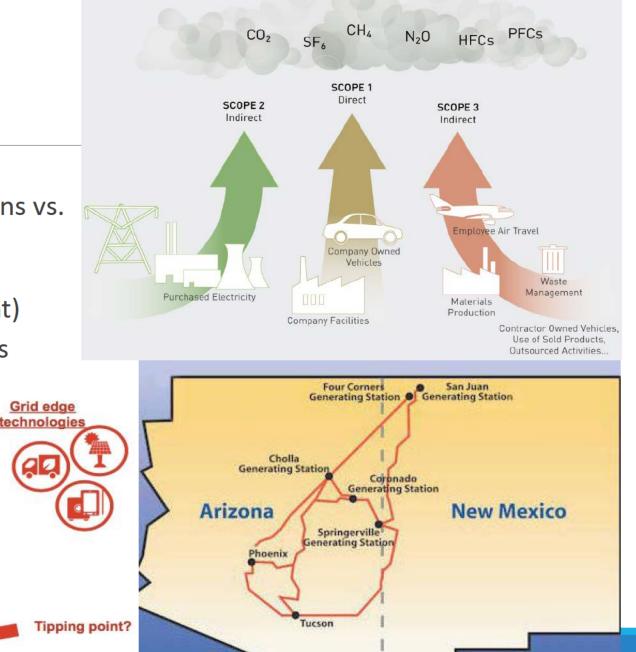
1975

1990

2005

washer)

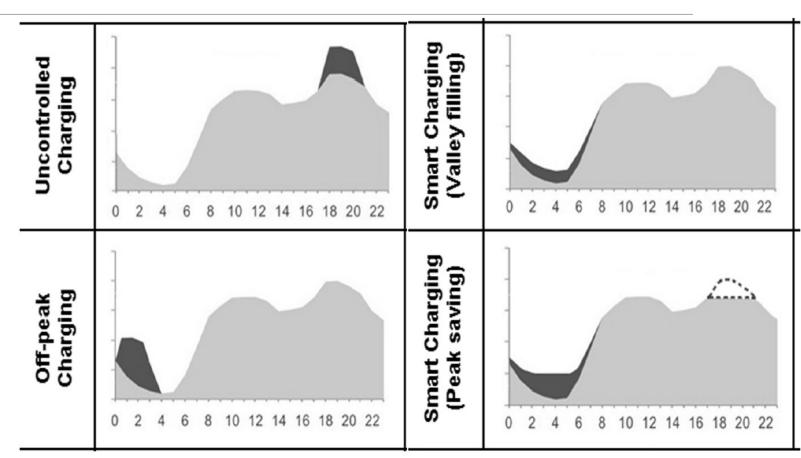
dishwasher) ~30-40 years


1945

100%-

50

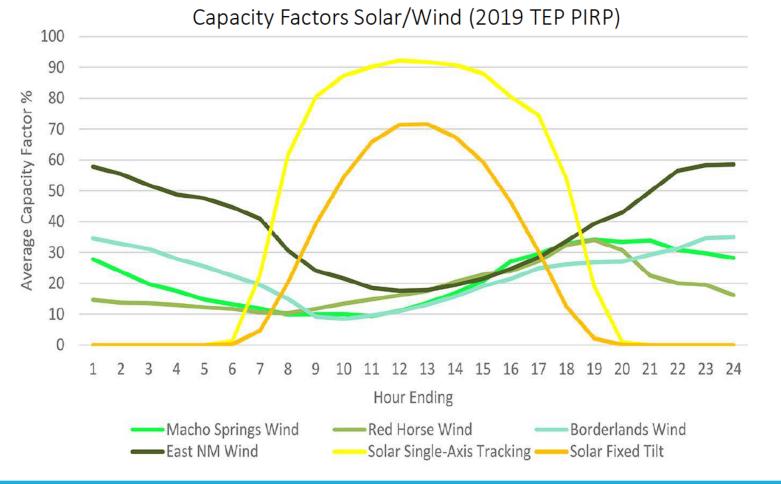
25-


1900

PEVs, Renewables, Existing Resources Portfolio Decision Making

Planning for Increased Load, Anticipating Social/Political Context

- Implications for revenue (growth), and fuel source for increased load
- Implications for time of use, load management, and available resources

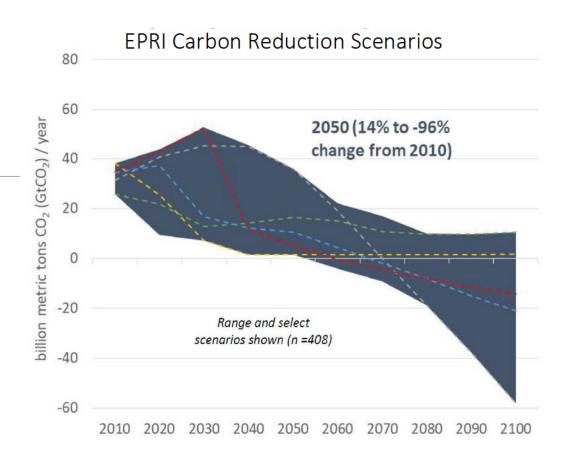

Garcia-Villalobos 2014

PEVs, Renewables, Existing Resources Portfolio Decision Making

Out-beak Charging Cha

Renewables Portfolio

- Smart/Coordinated Charging -Leveraging overlap to maximize efficiency
- Investments in low carbon resources to meet increased load
- Timing investments to minimize cost, maximize value

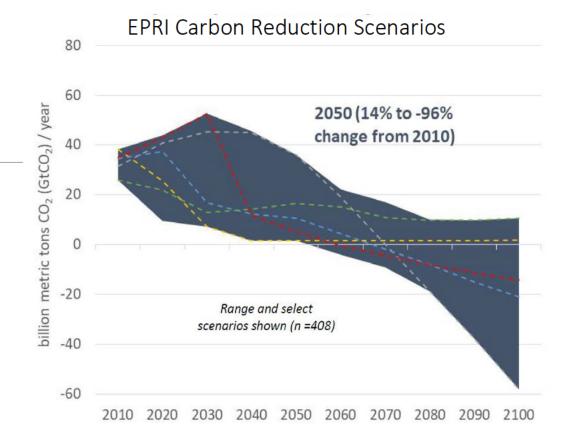

GHG Reduction -Costs/Benefits of Pathways

Cumulative Emissions vs. Reduction Targets

- Numerous scenarios may hit 2050 target but have different costs/implications based on qualitative factors or cumulative emissions
- Cumulative emissions as alternative metric to assess scenarios based on overall contribution

Percent renewables as outcome of scenario decisions – Emphasis on GHG reduction targets

 I.e. scenario A results in X% renewables by 2050, not setting a target of X% by 2050.



GHG Reduction -Costs/Benefits of Pathways

What are costs/benefits of different pathways to GHG emissions reduction targets?

 Costs and tipping points - willingness to pay re: GHG targets, costs of earlier vs. later portfolio changes, etc.

QUESTIONS AND COMMENTS

CLARIFICATIONS OR DETAILS? WHAT ARE WE MISSING?

INPUT ON LOCAL/REGIONAL CONTEXT FOR SCENARIOS

EXPERTISE AND INSIGHT FROM STAKEHOLDER EXPERTISE