

October 17th, 2019

IRP Advisory Council Presentation Distributed Energy Resources and Customer-Sited Energy Resource Alignment

CONTENT

- The Utility impacts related to Distributed Energy Resources
- Customer Energy Resource Alignment (CERA): Solution Overview
- Project RAIN
 - Background & Objectives
 - Achievements
 - CERA Roadmap Considerations
- Conclusion & Next Steps

OVERVIEW

The Utility Impacts Related to Distributed Energy Resources

Utility-Sited & Large Scale DER at TEP

Currently

- 474 MW Solar
- 80 MW Wind
- 21 MW Energy Storage
- 34 MW DR

630 MW new renewable capacity planned by end of 2030

A diverse ecosystem of Customer-Sited Energy Resources (CERs) are increasingly common, presenting challenges & opportunities to utilities

- The vendor landscape is increasingly complex as the number of CER devices & manufacturers grows
- Each CER device has unique comms protocols, impacts on the local grid, and vendors/aggregators
- Without monitoring & control, CERs represent uncertain generation and load at the grid edge

RESIDENTIAL CERS

Solar PV Æ Energy Storage Energy **Electric Vehicles** Storage & EV Chargers C&I Energy Resources Demand Response Wind Other Control Renewables

COMMERCIAL CERS

© 2019 TEP Reproduction and distribution without TEP prior consent is prohibited.

CERs continue to increase in penetration and impact across the grid

...and, Smart Thermostat market (~5M installed): estimated 20% avg. annual growth through 2024

As CERs proliferate they can cause a variety of grid issues

PROBLEM: When uncontrolled, CERs can cause local and system-level reliability issues

LOCAL ISSUES	SYSTEM-LEVEL		
High penetration can overwhelm service transformers, cause reverse power flow, and create power quality issues	Solar generation is not aligned with new Electric Vehicle load, creating over-generation mid-day and driving higher system peaks		
<complex-block></complex-block>	Generation or Load PV Solar Evress Generation New Peak Load 0 4 8 12pm 4 8 12am		

Issues begin in pockets but will spread system-wide as CER penetration increases

Utilities have 3 ways to address Customer-Sited Energy Resources (CERs)

• A blended approach leveraging each solution is likely most economic, practical

- Project RAIN demonstrated CER Alignment is technically viable, but has challenges
- TEP will continue to evaluate all options and pursue the most cost-effective portfolio

Customer Energy Resource Alignment (CERA) Solution Overview

CERs bring customer complexities beyond traditional Utility DER control

• CERs spread across the grid may be helping or hurting grid operations at any time

Considerations

Customen

CER

• It is a critical organizational decision to develop a strategy for aligning CERs to the grid

- Customer owns the asset and TEP must engage customers and gain consent to control their devices.
- **Customer experience** must be maintained and their objectives, like lower bills, must be considered.
- Third-party vendors may own, install or maintain devices or their communications.

Proliferating CERs necessitate customer engagement and alignment between customer, aggregator & utility objectives

For this reason, Project RAIN evaluated the customer experience of participants in addition to technical factors

Aligning CER operation could benefit both customers and the utility

- Improve grid utilization, reduce peaks and potential to defer infrastructure investment
- Shift electric use, like EV charging, to low load periods or times of excess solar generation

TIME

KEY CHALLENGE: Designing a system to perform multiple operational DER/CER Management objectives while interfacing with a diverse set of CER Aggregators & Devices

Project RAIN positions TEP to progress from "Walk" to "Jog"

Technical complexity & industry nascency drive long implementation timelines and necessitate staged testing, development, and deployment.

Project RAIN (Resource Aggregation and Integration Network)

Project RAIN—**Overview**

One of the first projects globally to explore how Customer-owned distributed generation, energy storage and flexible loads can be controlled to respond optimally to dynamic requests from a CERA platform.

TEP partnered with EPRI and Smarter Grid Solutions to control a variety of CERs

Project RAIN- Achievement Summary

- Validated technical ability to control and align CERs to grid needs
- Uncovered and resolved practical challenges
- Gained understanding of the state of the industry
- Learnings will inform CERA Roadmap, future implementations

CERA Capabilities	Project RAIN Validation
Peak Reduction & Load Shifting	✓
Curtail Capacity & Prevent Reverse Power Flow	\checkmark
Local Balancing	✓
CER Dispatch via Aggregators	\checkmark
CER Dispatch- Direct to Device	✓
Real-time CER dispatching	\checkmark

Project RAIN Validates CERA's potential to solve utility & customer CER challenges

Project RAIN provided TEP with a critical understanding of how CER devices can be aligned to support local and system-level objectives

CERs were successfully controlled to provide grid benefits

ACHIEVED LOAD REDUCTION DURING PEAK PERIODS

- Smart Thermostat temperature setpoints increased
- Water Heater avoids heating, maintains lower water temperature
- Battery storage systems dispatched to fulfill remaining demand or provide energy to the grid
- Collectively, the CERs were coordinated to provide 3kW of peak demand reduction

CERs were successfully controlled to provide grid benefits

CURTAILED OVERGENERATION

 Solar PV generation curtailed by 90% of nameplate capacity (~55kw) during overgeneration events

MAXIMIZED LOCAL CONSUMPTION & REDUCED REVERSE POWER FLOW

- Battery storage aligned to improve selfconsumption of Solar PV and minimize exports to the grid
- Reduced Reverse power flow up to almost 80%

Project RAIN—Implementation Challenges

Numerous challenges (both technological and philosophical) were encountered. While some were overcome, others remain to address in future implementations

PROTOCOL ISSUES

- 1. Proprietary standards still pervasive, introduce complication & potential vendor lock-in
- 2. Signals limited to set of 4, predefined SIMPLE commands
- 3. No defined means of cancelling/updating an event
- 4. Open ADR to API conversion required
- 5. Some definitions of events still reside with vendors

DATA ISSUES

- 6. No indication of shed event
- 7. Reports idle shed when should report idle heightened
- 8. No awareness of device state
- 9. No DERMS awareness of inverter kVA (real vs. reactive) power limit

PROCEDURAL ISSUES

- 10. Alerts sent for every hour of multi-hour event
- 11. Signals take up to 3 minutes to reach some t-stats

HARDWARE/SOFTWARE FAILURES

- 12. Comms/control board failure
- 13. Cellular link to parking garage frequently breaks
- 14. Comm board failures
- 15. Stops dis/charging arbitrarily
- 16. ECO6 units disconnect permanently if SoC drops too low

Other Challenges

- Current approach to device connectivity is data-intensive
- Customer comfort impacted by t-stat events
- Contractor education & installation issues

Project RAIN Key Findings

Standardize Protocols, Minimize Customization

Even with open standards, differences between vendors necessitate costly customization

Balance Local & Centralized CER Control

Local control can achieve static local goals, but centralized CERA required for dynamic grid needs

Minimize Communication Data Intensity

High intensity requires high bandwidth networks, increase costs of implementation

Prioritize Customer Experience & Contractor Engagement

Customer engagement & experience, proper CER installation / maintenance are critical to effectiveness

Develop Dispatch Optimization Capabilities

Effective optimization is critical to enabling full value of long-term ADMS/CERA integration.

Key Finding Roadmap Considerations

Standardize Protocols, Minimize Customization

- Advocate CER communications standardization in legislative, regulatory, and utility policy
- Leverage common aggregation platforms
- Limit the number of supported devices types in program design

Balance Local & Centralized CER Control

- Centrally controlled CERA will be required to align to dynamic needs
- Evaluate local control to add customer value (e.g. bill reduction)

Minimize Communication Data Intensity

- Evaluate alternative, "push" based communication approaches
- Consider network bandwidth needs in technology roadmap

Prioritize Customer Experience & Contractor Engagement

- Prioritize customer comfort/experience in program design
- Engage manufacturers, installation & maintenance contractors to ensure awareness of CERA programs/equipment

٠

Develop Dispatch Optimization Capabilities

- Prioritize Optimization capabilities in Distributed Energy Resource Management System/CERA selection
- Utilize a phased implementation & testing roadmap to develop & validate capabilities

Conclusion & Next Steps

CERA is part of a system wide **Distribution Modernization** effort at **TEP**

Distribution Modernization drives 4 key pillars of operational advancement

- AMI Automated Metering Infrastructure
- ADMS Advanced Distribution Management System
- OMS Outage Management System
- EMS Energy Management System
- EIM Energy Imbalance Market

- Situational awareness and real-time response is the TEP roadmap
- These 4 pillars are in-flight
- Once completed, the infrastructure to achieve CERA is in place

TEP Current & Near-Term CERA Programs

large-scale battery units

TEP's Energy Efficiency & Demand Side Management Plans are increasingly promoting managed CERs

Residential Load Management Pilot Program	Electric Vehicle (EV) Infrastructure Program	Customer Incentive Programs
 Demand Response & Thermal Storage: Smart Thermostats and Controlled Water Heaters Feeder level Storage via 	 Smart City EV Buildout Smart Home EV Pilot Smart School EV Bus Pilot Regional EV Plan Managed Charging 	 Smart Thermostat Incentives EV Charger Program Grid Interactive Water Heater Program

Programs are incentivizing CER adoption, including utility control of CERs

Project RAIN—steppingstone towards a full, system-integrated CERA

• Project RAIN focused on control of end-point CERs – more functionality remains to be tested

Long-Term CERA Capabilities	Project RAIN	Enterpris
CER monitoring & control	\checkmark	ADMS
Real-time CER dispatching	\checkmark	
CER scheduling	\checkmark	
CER Aggregation	\checkmark	
Dispatch/Schedule Optimization	×	ROOFT
CER Forecasting	×	COMMERC
Fail-safes	\checkmark	
Market Participation	×	
Real/Reactive power control	✓ real power only	
Volt Var Optimization	×	S

GIS – Geographical Information System CIS – Customer Information System MDMS – Meter Data Management System

PROJECT RAIN—Conclusion

- Challenges across technology, process, vendor and customer engagement to be solved
 - CERA as a scalable solution will require incremental validation and testing
- Aggregator vendor ecosystem for CERs is nascent but rapidly evolving
- CER growth combined with long lead-time for solution implementation necessitate:
 - continued planning & evaluation
 - incremental development & testing of CERA capabilities
- Alignment of CERs presents a key opportunity to benefit TEP grid operations

NEXT STEPS

- Design incremental field deployments
- Continue process of learning
- A roadmap that aligns **CERA** with **ADMS**

THANK YOU!

