

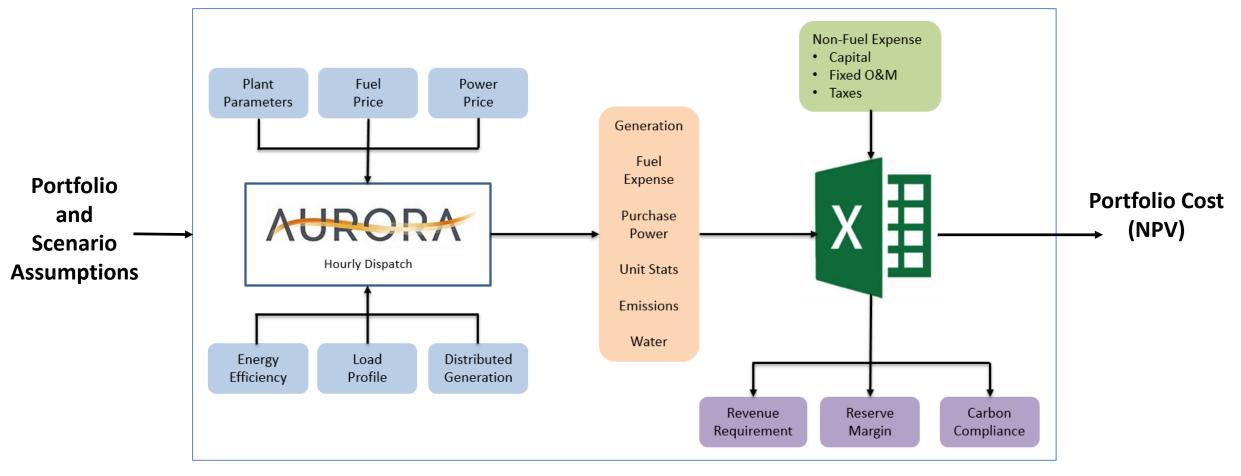
TEP Integrated Resource Plan

Advisory Council Meeting

July 18, 2019

Welcome

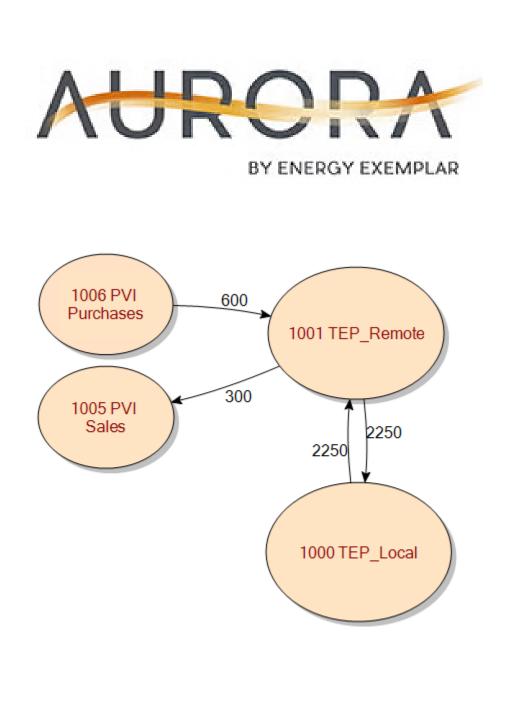
KEVIN SKINNER CORPORATE TRAINING PROGRAM MANAGER


Modeling Overview

JEFF YOCKEY DIRECTOR, RESOURCE PLANNING

Overview of Portfolio Cost Assessment

Fixed Costs and Portfolio Net Present Value


- Aurora estimates TEP's operating / dispatch costs
- Capital and other fixed costs are estimated in a spreadsheet model that accounts for:
 - Asset depreciation
 - Cost of capital (debt and equity)
 - Fixed O&M
 - Capital improvements
 - Insurance and taxes
 - Renewable tax credits
 - Transmission and gas transportation costs
- For each portfolio, a net present value is determined for the total (operating + fixed) cost. Portfolios can then be compared on the basis of their cost and sensitivity to different market and regulatory conditions (scenarios)

Overview of Aurora

- Specifically designed for simulating electricity system dispatch and costs (minutes to years)
- Determines the least-cost dispatch subject to a variety of specifications and constraints
- Example specifications:
 - Electricity demand
 - Fuel prices and other O&M costs
 - Unit capacities and efficiencies
 - Unit emission rates
 - Planned and unplanned outages
 - Ramp rates and minimum up/down times
 - Demand side programs
 - Wholesale electricity market prices
 - Power contracts

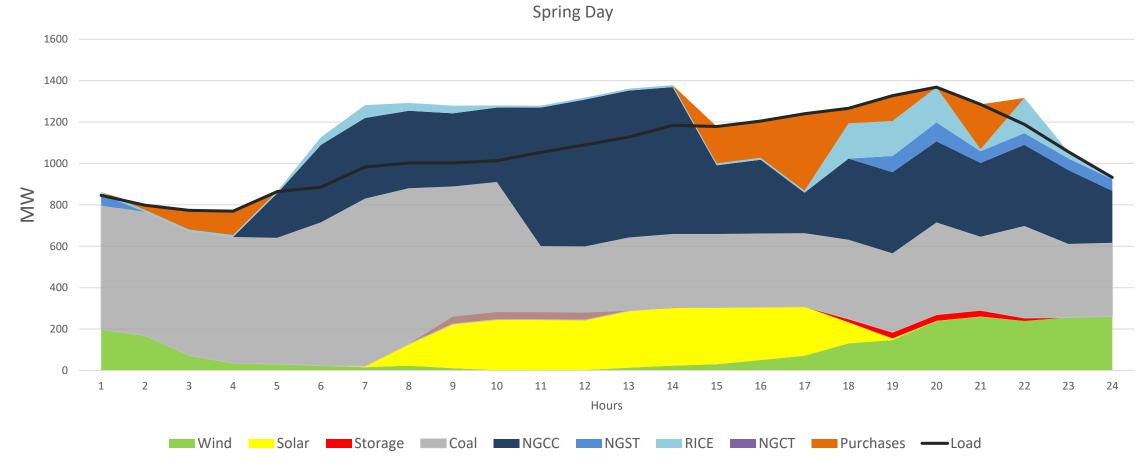
- Example constraints:
 - Transmission limits
 - Ancillary service requirements (reserves)
 - Minimum renewable energy generation
 - Minimum fuel use (take or pay contracts)
 - Fuel limits (hydro, gas, storage)
 - Emission limits

💶 Status 🛛 🔀 Project Setup 📃 Inp	ut Tables 🗙 📕 Resources T	EP					
Change Set Window 4 Zonal Tables							
File Home Location	Table Type	# of Records	In Study				
New Folder	Demand Hourly	8952	✓				
ClearFilter Unfiltered	Demand Monthly	14	✓				
🚭 Save to Memory 🔻	Demand Monthly Peak	1104	✓				
	Electricity Price	0	✓				
🔄 Change Sets Main	Emission Price	7	✓				
Base Case	Emission Rate	135	✓				
 High Economy 	Fuel	27	✓				
 Time Series Annual Time Series Monthly 	General Info	1	✓				
 High Technology 	Heat Rate Definitions	48	✓				
Time Series Annual	Hubs	1	✓				
Time Series Monthly	Hydro Monthly	2	✓				
Unassigned Changes	Hydro Vectors	2	✓				
	Link	4	✓				
	Maintenance Schedule	159	✓				
	Operating Pools	2	✓				
	Portfolio Contract	35	✓				
	Portfolio Information	3	✓				
	Portfolio Resource	103	✓				
	Resource Groups	3187	✓				
	Resources	103	✓				
	Risk	756	✓				
	System Diagram	11	✓				
	Time Series Annual	143	✓				
	Time Series Generic	0	✓				
	Time Series Hourly	26304	✓				
	Time Series Monthly	492	✓				
	Time Series Weekly	22	✓				

Unit Dispatch

- To determine the least-cost dispatch, Aurora generally follows the process below for each hour of a simulation:
 - Distributed generation and other demand-side programs are applied to determine the net demand
 - "Must run" thermal units are dispatched at their lowest possible capabilities. (Hence, this generation appears at the bottom of the "resource stack.")
 - Because they have no fuel costs and very low variable O&M costs, renewable units are generally the cheapest and second type of resource to be dispatched. These will be dispatched at their maximum capabilities (subject to solar and wind availability in the hour), unless curtailment is necessary to avoid over generation.
 - The remaining net load for the hour is met through a least-cost combination of wholesale market purchases, further dispatch of must-run units, and dispatch of cycling and non-cycling units.
 - Dispatch Cost = Fuel Cost + VOM + Startup Cost (if not already operating)

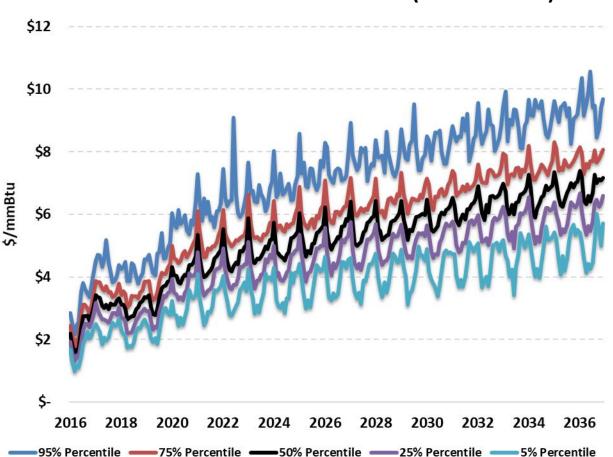
Fuel Cost = Fuel Price * Unit Efficiency (heat rate) * Unit Generation (dispatch)



Unit Commitment

- By nature of their design, many common generation technologies (e.g., coal, nuclear, and larger natural gas units) cannot turn on and off by the hour. They are either physically incapable or incur significant startup costs when doing so.
- Such units are designated "non-cycling" and are assigned minimum up times, minimum down times, start-up costs, and shut-down penalties.
- Non-cycling units must be "committed" before they are eligible for dispatch. Aurora will commit a unit if: 1) it has been off for its min down time, and 2) it is profitable to operate over its min up time, given its startup and dispatch costs and an "internal" price forecast generated by Aurora specifically for commitment decisions.
- Once committed, a non-cycling unit must generate at least its minimum generation for at least its min up time. After such time, Aurora will shut down a unit when its unprofitability exceeds its start-up costs (plus any shut-down penalty).

100 Miles


Daily Dispatch Profile

NGCC=Natural Gas Combined Cycle | NGST=Natural Gas Steam | NGCT=Natural Gas Combustion Turbine | RICE=Reciprocating Internal Combustion Engine

Other Aurora Capabilities

- Long-term capacity expansion
 - Least-cost build-out and retirement pathway given specific requirements
- Risk studies
 - Evaluate how model outputs (costs, emissions, etc.) are affected by uncertainty in the inputs
 - Input values can be stochastically varied or demand, unit outages, renewable generation, and fuel prices
- Marginal cost studies
- Wholesale electricity price forecasts
- Market valuation of electricity assets

Stochastic Natural Gas Price Forecast (2017 TEP IRP)

Technology and Cost Projections

Technology Cost and Performance Projections

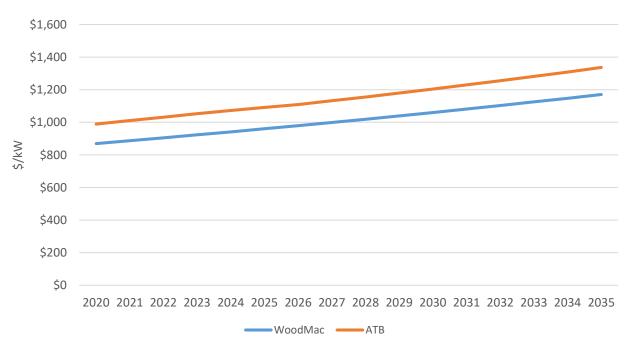
- Wood Mackenzie
 - An industry leading research, analysis and consulting firm
 - Requires a subscription: North American Power and Renewables Subscription
 - The North America Power and Renewables subscription includes a Long-Term Outlook (LTO), which is a comprehensive integrated forecast of energy demand and supply
- National Renewable Energy Laboratory (NREL)
 - The National Renewable Energy Laboratory is a national laboratory of the U.S Department of Energy, Office of Energy Efficiency and Renewable Energy
 - Annual Technology Baseline (ATB) workbook documenting detailed cost and performance data (both current and projected) for both renewable and conventional technologies.
 - The ATB data are freely available for use
- U.S. Energy Information Administration(EIA)
 - Statistical and analytical agency within the U.S. Department of Energy.
 - EIA's information is issued daily, weekly, monthly, annually, and periodically as needed or as requested
 - Annual Energy Outlook (AEO) provides long-term energy projections for the United States

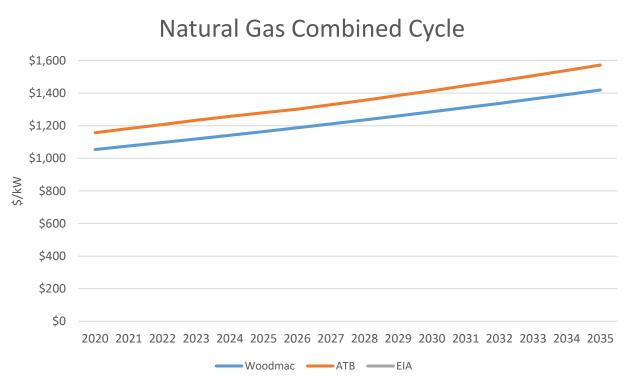
North America Power & Renewables Tool evolving market landscapes made simple.

2018 Annual Technology Baseline (ATB)

Annual Energy Outlook 2019 with projections to 2050

#AFO201




January 24, 2019 www.eia.gov/aeo

Fossil CapEx Forecast

Combustion Turbine

Solar CapEx Forecast

Wind and Battery CapEx Forecast

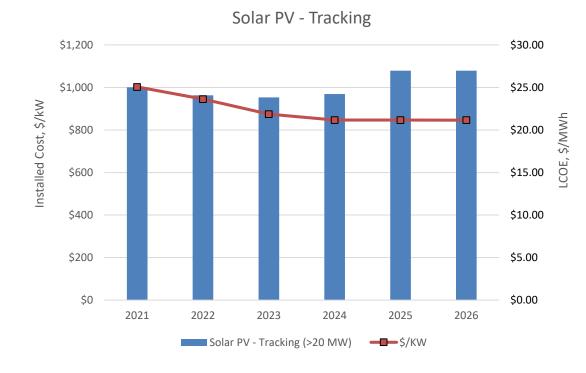
NREL - https://www.nrel.gov/docs/fy19osti/73222.pdf

Phase Out of Federal Tax Incentives

Production Tax Credit (PTC)

- \$23/MWh credit for each unit of generation
- Annual inflation-adjustment
- Applies for 10 years after the date the facility is placed in service

Investment tax credit (ITC)


- Deducts the percentage from the cost of installing a solar energy system from federal taxes
- Credit is amortized over the life of the asset


 Safe harbor 	
---------------------------------	--

Year Construction Commences (1)	PTC Available	ITC Available		
2017	PTC amount is reduced by 20%	30% Deduction		
2020	PTC amount is reduced by 40%	30% Deduction		
2019	PTC amount is reduced by 60%	30% Deduction		
2020	PTC no longer available	26% Deduction		
2021		22% Deduction		
2022+		10% Deduction		

Impacts of Tax Credits

Candidate Resources

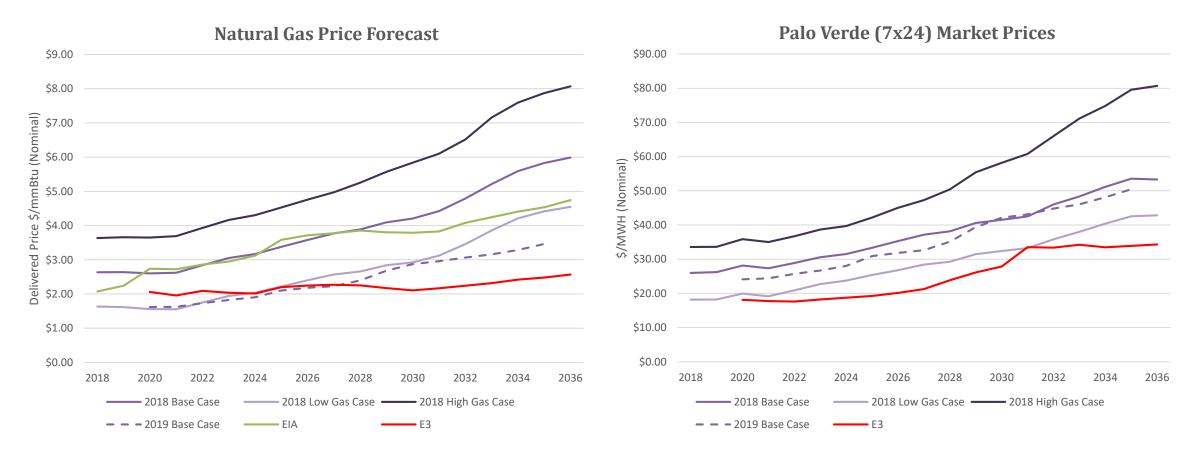
- Future resources to be modeled
 - Reliable cost data
 - Successfully deployed at TEP
 - Successfully deployed at similar utilities for similar purposes
 - Particular interest to stakeholders
- Future resources not being considered
 - Conventional hydroelectric
 - Coal
 - Integrated gasification combined cycle
 - Small modular nuclear reactors
 - Geothermal

Table 0 - Resource Platik							
Category	Туре	Zero or Low Carbon Potential	Level of Deployment by Utilities	Local Area Option	Interconnection Difficulty	Dispatchability	
	Energy Efficiency	Yes	High	Yes	None	None	
Load Modifying Resources	Direct Load Control	Yes	Medium	Yes	Low	High	
	Distributed PV Solar Generation	Yes	Medium	Yes	Medium	None	
Grid Balancing/ Load Leveling Resources	Reciprocating Engines	No	Low	Yes	Medium	High	
	Combustion Turbines	No	High	Yes	Medium	High	
	Batteries (Li-ion)	(1)	Low	Yes	Medium	High	
	Batteries (Flow)	(1)	Low	Yes	Medium	High	
	Pumped Hydro	(1)	High	No	High	High	
Load Serving Renewable Resources	Wind	Yes	Medium	No	High	Low	
	Solar PV	Yes	Medium	Yes	Medium	Low	
	Solar Thermal	Yes	Low	Yes	Medium	(2)	
Load Serving Conventional Resources	Combined Cycle (NGCC)	No	High	Yes	Medium	High	

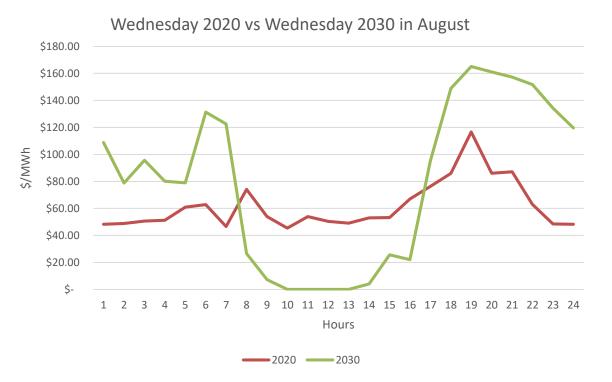
Table 6 - Resource Matrix

Emissions associated with storage can vary from zero to levels greater than conventional fossil depending on what
resource is on the margin during charging and discharging.

(2) Natural gas hybridization or thermal storage could allow resource to be dispatched to meet utility peak load requirements.


Market Projections

Market and Gas Forecast

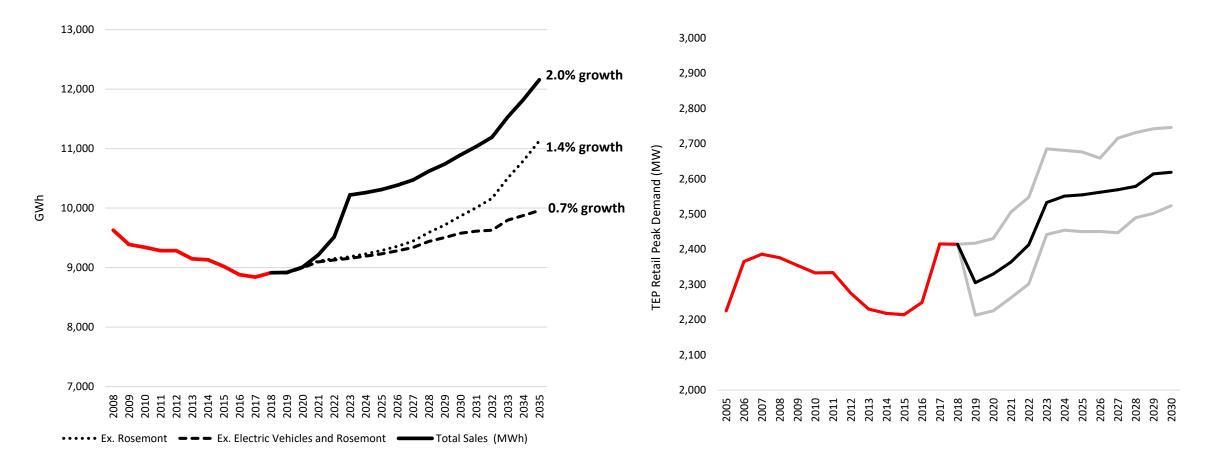

• Need integrated forecast with Gas, Power & Carbon Pricing

Midday Pricing

Advisory Council Member Feedback

KEVIN SKINNER CORPORATE TRAINING PROGRAM MANAGER

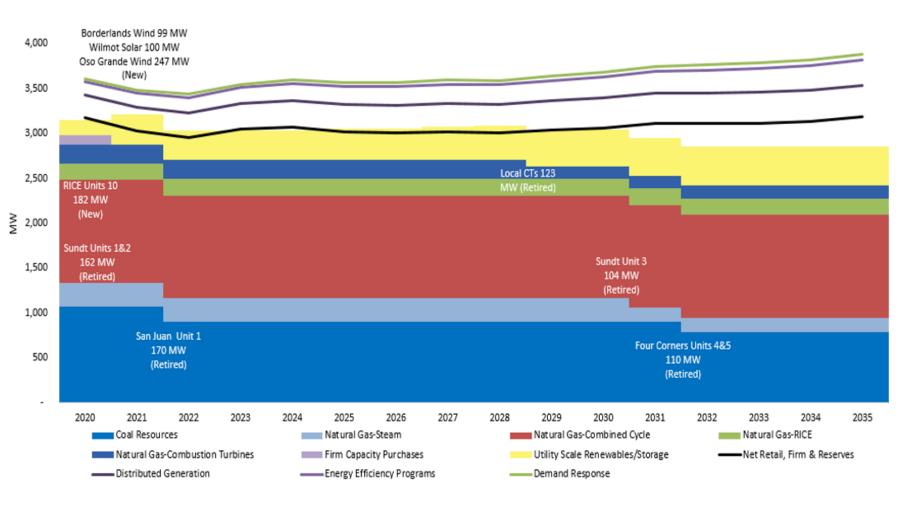
May Meeting - Uncertainty Summary


- The future is uncertain and strong forecasting tools do not change that
- Avoid "big bets" decisions involving significant expense yet which do not perform well across all reasonably foreseeable futures
- The timing of resource acquisitions can have a significant impact on the cost effectiveness of those decisions
- Diversification helps mute the impact of unfavorable future outcomes and provides opportunity to take advantage of favorable future outcomes

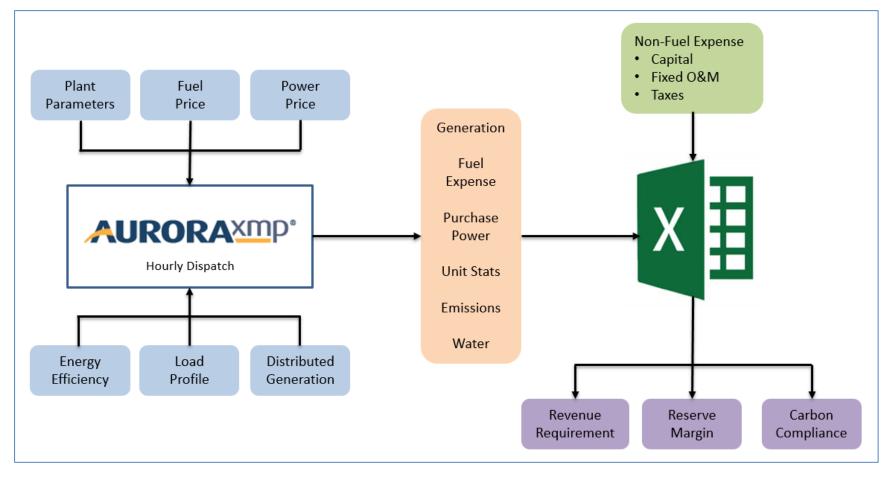
June Meeting - Load Forecast

Load Forecast

Peak Demand Forecast



June Meeting - Resources Overview


New Resources

- Borderlands Wind (2020)
- Wilmot Solar and Storage (2020)
- Oso Grande Wind (2020)
- o **RICE (2020)**
- Gila River Unit 2 (2019)

July Meeting - Modeling Assumptions

July Meeting - Price Forecast

New Resources Cost Factors

Year	Gas CT - Aero	Gas CT - Frame	Gas NGCC - Conventional, Wet Cooled	Reciprocating Engines	Nuclear	Solar Thermal - Six Hour Storage	Solar PV - Fixed Tilt (1-20 MW)	Solar PV - Tracking (>20 MW)	Wind - Onshore	Battery Storage
2017	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2018	1.013	1.013	1.013	1.013	1.013	0.930	0.917	0.917	1.005	0.796
2019	1.034	1.034	1.034	1.034	1.034	0.863	0.855	0.855	1.014	0.751
2020	1.054	1.054	1.054	1.054	1.054	0.793	0.802	0.802	1.023	0.707
2021	1.075	1.075	1.075	1.075	1.075	0.788	0.756	0.756	1.030	0.670
2022	1.097	1.097	1.097	1.097	1.097	0.783	0.699	0.699	1.038	0.639
2023	1.119	1.119	1.119	1.119	1.113	0.777	0.677	0.677	1.045	0.616
2024	1.141	1.141	1.141	1.141	1.129	0.771	0.677	0.677	1.052	0.598
2025	1.164	1.164	1.164	1.164	1.146	0.764	0.677	0.677	1.059	0.583
2026	1.187	1.187	1.187	1.187	1.162	0.757	0.677	0.677	1.066	0.568
2027	1.211	1.211	1.211	1.211	1.179	0.749	0.676	0.676	1.073	0.553
2028	1.235	1.235	1.235	1.235	1.196	0.741	0.676	0.676	1.080	0.535
2029	1.260	1.260	1.260	1.260	1.213	0.731	0.676	0.676	1.087	0.519
2030	1.285	1.285	1.285	1.285	1.231	0.722	0.676	0.676	1.095	0.503
2031	1.311	1.311	1.311	1.311	1.248	0.736	0.675	0.675	1.103	0.497
2032	1.337	1.337	1.337	1.337	1.266	0.751	0.675	0.675	1.110	0.492
2033	1.364	1.364	1.364	1.364	1.284	0.766	0.675	0.675	1.118	0.487
2034	1.391	1.391	1.391	1.391	1.303	0.781	0.674	0.674	1.126	0.482
2035	1.419	1.419	1.419	1.419	1.321	0.797	0.674	0.674	1.134	0.477

Base Year: 2017

Next Steps

Future Agenda Items

- August
 - Revenue requirement
 - Resource adequacy
- September
 - Energy efficiency / DSM
 - Demand response
- October
 - Greenhouse gas emission reductions

Next Meeting

Monday, August 19??

